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STOCHASTIC BIFURCATION IN THE THEORY OF THE FLEXURE OF 
SPHERICAL SHELLS AND CIRCU~R M~~RANES* 

S.I. VOLKOV 

The capacity of rigidly clamped elastic membranes and open shallow 
sphericai shells of circular outline that are in equilibrium under the 
action of a radial stress, given uniformiy on the contour, and transverse 
loads distributed radially along the surface to form a field‘with a quasi- 
Gaussian probability measure to retain shape is investigated. It is 
assuned that the behaviour of the membranes and shells is described by 
vcn Karnan equations taken in a radial approximation. 

The foilowing method /l/ is used. A generaiizaticn of the probability 
density, a probability functional (PF) induced by the probability measure 
of the ioad and the operator of the problem is ccnstructedinthe space of 
possible SC~,~ ';*ions of the initial boundary value problem (the concept of 
probability density inthe functional space of individual realizations of 
a random field of the desired parameters was first utilized in statistical 
hydromechar,ics problems /2/l. Tne times of a substantial change in the, 
shape or an abrupt decrease in the shei? (and membrance: carrying capacity 
are related to the first bifurcation of the PF modes with respect to the 
growth of the compressive force. 

The application of this method starts with the derivation of the 
equations for the PFextremals inthe apace of weighted derivatives of the 
deflection function with respect to the dimensionless variable radius. 
Within the framework of the Galerkin method, solutions of the designated 
equation are determined. Simple relationships are determined that relate 
the radial stresses to the statistical characteristics of the transverse 
load field at the time of bifurcation of these solutions. It is shown 
that up to the time of the first bifurcation of PF has just one extremal, 
a trivial mode for the membranes but a non-trivial mode for the shells. 
Then by starting with the time mentioned the membrane PF reaches maxima 
on the extremals bifurcating from the trivial, while the shell PF acquires 
a new maximum (in addition to the existing maximum) on still another 

l Prikl.tfatem.Mekhar!.,49,4,616-626,198s 



non-trivial extremal. Results are presented of a computation of the 

compressive forces of the first bifurcation of the PF modesinthe case 
of transverse loads with a small correlation scale. 

1. We consider the axisymmetric elastic strain of an open, rigidly clamped, Shallow 
spherical shell that is in equilibrium under the action of a uniform radial stress on the 
contour and a radiallydistributedtransverse load on the surface. The behaviour of such a 

shell. is described by von Karman equations taken in a radial approximation /3/. Let the radii 
of the reference contour a and of the sphere R be in the ratio E =afR Qi. Then in the 

dimensionless von Karman equations solved for the stress function, the terms of second and 
higher order in e can be neglected. We consequently arrive at the following sat of equations 

N ir; ul = f (r) (1.1) 

N[r;u]=L~(r)~a,Z’,[r;u]+aeN~[r;uJ, .C= 

-&- ++& 
Nl [r; u] = 5 dsg (r, s)(n)-’ 1 up(s) u (r) 

D 

NE [r; u] = i dsg (r, s)(2r”h (F) _t b’h (s)) u (s) 
0 

du 
u = r’,‘r dr ) ,i (r) = r-I’* C&I (s) 

. . 

Ir”Ui,=o<=, u I& =“o (v I,=1 = 0) 

The dimensionless quantities in (1.1) and (1.21 are related 

a {r, L', z) = (p. V. 2). Da-? {hop, q) 

a = (aR,-l]z, Be2 = 20 (hE)“, 0 <c: < 1 

(1.2) 
to the dimensional formulas 

Here v is the deflection of points of the middle surface z,p is a variable radius, E 
is Young's modulus, h is the shell thickness, D is the cylindrical stiffness, up is the radial 
stress on the contour, q is the transverse radially distributed load, g(r, s) is Green's 
function of problem (l.lt, (1.2) for a = i, = 0, and writing Gl Ir; ul means that the quantity 
Q, is a function of r and a functional of the field u(r). 

Let Q be the space of elementary events w, L' the set in which solutions of (1.1) are 
sought with the conditions (1.21, and F a set dependent on the case of the right sides of 
(1.1). We assume that the mapping o-j (/of is characterized by a non-negative normalized 
Bore1 measure p,(o) given on R such that higher moments of the random field f(r) are expressed 
in terms of the lowest by a method close to a Gaussian field. The question is what elements of 
of U possess the greatest probability for i.> 0 and fcr what values of h does bifurcation 
of these elements occur. 

2. We introduce a set of trial functions @ including, in particular, the orthonormalized 
eigenfunctions qj of problem il.l), 11.2) linearized for j = V in the segment [0,1] . 

We set 

L(:..j,lil=~dr(5(1:ii]-j(r))y(r) 

We extract the subset r of ali pairs (f, U)E F X t: in F x t‘ *hat satisfy the condition 

Uu, j. VI = 0, t‘g E 0 (2.1) 

We let the symbol u (rjw) (or u k; j(i w)ljdenote the stochastic solution of the initial 
problem which we shall understand to be a Bore1 measurable mapping 524 U (with a value at 
the point o) that satisfies the system (2.1), (1.2) and corresponds to the mapping o +j(r[ 
cd): a+ F (the existence of such sollltions follows from the proof of Theorem 1 in /4/). 

Let M be the projection of the space I' on c' and C(F X M)the Banach space of all 
complex-valued functionals *if, U) continuous F x M with natural definition of aa norm 

liccli = .+up I $ 11, Ul I, uq fS c (F x nr) 

Then under the conditions of this problem, in F X Mthere exists /4/ a normalized non- 
negative Radon measure pr connected with pI (wf by the relationship 

C~~,~~fri.tj~l~~~~f~U'~I- 
5 ,LfMWf4 (2.2) 

According to the remarks of Theorem 2 in /4/, the Lebesgue extension /5,/ of the measure 
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PT satisfies the conditions 

s drT+,Ifl~lL[urf.cpl=O (2.3) 
F,:M 

S dpTIL[u,I,cp]12=0 
FXM 
VJ, E c (F x Al), vc& f Q, 

This means that the measure pr is lumped in solutions of (2.1). The contraction p0 
of this measure in C(F)is in agreement with the measure induced by the mapping @-+/(I 0). 
The continuation j(] o)+ u (1 o) of this latter mapping induces a measure that is in agreement 
with the contraction p1 of the measure VT in C(M). 

By virtue of the conditions used, the random field f(r) is similar to a Gaussian field 
in the sense of the representation of the higher correlation momentsinterms of the lower 
moments. Let its first moment be zero, and let the second correlation moment K (r,r') be the 
kernel of a non-degenerate integral operation on the set of functions M73 c given in the 
segment lo,11 and satisfying conditions (1.2). It then follows from relationships (l.l), (2.2), 
(2.3) that 

s d&r IdrJ [r; u] fP(r, rr) X ]rr: u] = \ dr6(r, rr)= 1 (2.4) 
M 0 0 0 

Here b(r,r,) is the Dirac &function given in the segment IO,11 and related by the 
conditions (1.2). 

We assume that auxiliary measures s1 and v,, exist in an appropriate manner in the sets 
M and F such that the measure p, is absolutely continuous with respect to v1 and the measure 

PO with respect to vO. According to a well-known Radon theorem, there hence results the 
existence of Radon-Nikodym derivatives dpl'dy, and dp,‘dv,. The derivative dpl!‘dv, is 
defined forallpoints of the space fiwith the exception, perhaps, of a certain subset .II, for 
which fl (.II,) = 0. (By virtue of the condition presented above for absolute continuity, pl(.lI,) = 
0 simultaneously). The derivative d&dv, is in turn defined for all points of the space 
F with theexception, perhaps, of a certain subspace F, for which v,,(FJ = 0. 

The measure of uncertainty intheinformation, the information entropy corresponding to 
this statistical distribution Pi (i = 0,1), is defined by the formula 

dh H,=--g dpzlnz (So=F,S1=M) 
c 1 

The probabilistic measure p, can be found by the rules of information theory /6,1/ by 
the Lagrange method from the condition of maxinun entropy H, simultaneously in combination 
with the non-negativity and normalizability of p1 and the presence of the integral (2.4). 
Then the absolute extremum of the functional 

$=-\dp,[h+- fill 
t 

‘1 
5 dr i drl;V [r; IL] K-’ (r, rl) A’ [rl; u] + f~:] 
0 

corresponds to the conditional extremlum of H,. 
The coefficients 61. B? here are Lagrange multipliers. The maximur. of v is reached 

in the measure 

dpl = c erp {-fllS 1111) dy,; c = erp (-1 - 6?) (2.5) 

S [II] = i dr\ dri 2 [r; IL] Ii-’ (r. rl).v [rl; u] 
6 

The quantities 6, and c are given by (2.4) and the condition for normalizability of 
the measure 11~. 

The invariance of the information entropy required according to information theory 
postulates /6/ (for the passage from the measure pO to the measure rI) under the induced 

mapping w- r(l a)- u ],f(] 0)) is ensured by selecting v1 in the following form: 

the 
the 
The 

-dv, = 1 Det 1r-l (u)l / dv,, (2.6) 

Here dv,, is a genralized measure given on M (by the terminology in /8/) that represents 
analogue oftheelementof "volume" in the space of functions u (r) from .1/; De1 lr'(ir)l is 
Fredholm determinant of the integral operation in the segment IO, 11 with kernel r’[r.r’; ~1. 
two-point function I- [r. r'; u] satisfies the conditions (1.2) and the equation 

s drl w r [ r,.r';u]=a(r,r') 
0 
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We substitute relationships (2.5), (2.6) into the second integral in (2.4). This 

integral is then formally reduced by the transformation (1.1) to a Gaussian type Continual 

integral in F 

c idvolj (r) f (r’) exp {- fil \ dr \ drlf (r) K-‘(r, rl) f (rl)} = K (r, r’) (2.7) 
0 i 

Here dv,,. the generalized measure in F, is the analogue oftheelement "volume" in the 

space of the functions f(r) from F. 
Carrying out continual integration in (2.7) by the method in /9/, we obtain that PI =I!*. 
We extract the generalized derivative in relationships (2.5) and (2.6) 

p,[u]=~ = r/Det[r-'(u)]IexpI-~S[~1]] (2.3) 

The functional p, [ui, called later the probability functional (PF), is an infinite- 
dimensional generalization of the finite-dimensional probability density of the quantities 

x lri) from M into the functional space M (ri are the coordinates of points of a finite 

partition of the segment IO, II). 

3. The condition of a local extremum requires disappearance of the variational derivative 
of the PF p, [u] on the extremals u = u,E !If. The equation for u, corresponding to this 
condition has the form 

? 1 

N[r;u,J= - drl dr?K(r.r,) 
s ! (3.1) 
0 ‘r 

-& r Ir2, r1; al ("_ 

A non-analytic operation with kernel r Ir. r'; u = u,l is on the right side of (3.1). 
However, it follows from (2.8) that degeneration of the matrix r’(r,r’: u = u,] sets in only 
in those realizations of its functional argument u* from U for which the probability is,zero. 
Therefore, the operators whose kernels comprise the matrix of r[r, r'; u = u,l. are analytic, in 
probability, with respect to the functional argument u* or other parameters of the problem. 

Using this circumstance, we transform (3.1) to a form containing only lower-order terms 
in the geometric non-linearity parameter a. We set % = hO +- 17. In a small neighbourhood 
of ho let 

Dct (l--'(u)]]~zo#O 

Then expansion of the components on the right side of (3.1) in powers of 
with non-zero probability. Taking account justofthe principal terms in this 
obtain (introducing the notation X = "* (7)) 

B (r: i.,) 1 = -_'i'% - a-l', Ir: 11 - ze.Y: [r; ~1 - ?I$~ (r: i.. jSa) 1 - ZIE~ (r: j.: I 

B (r; h,) ,! = Lx lj.=)., - a j ds.V (7, s; ?.o) x (s) 

.II (r, s: 1.) = 2 5 dsl f drlh’ (r, s) g (rl. s) (rl.s)-’ t ?. 

[2ro (s, h; Xy r. (rl, sl; h) - r. (rl. rl: j.) r. (s, sl; k)] 

a is possible 
expansion, we 

0 (2) (3.2) 

1 

$1 (r; i., ia) i: = i ds [.I1 (7, s; i.) - .I1 (r, s: i.e)] 5: (s) 

Here B(r;i,) is a linear operator; the function r. (r. s; i.) equals the functions r [r, r'; 
1~ = 0] at the values h> 0, and in the general case is bounded in probability. 

Study of the solutions of (3.2) with analytic operators, in probability, the clarification 
of the moments of their bifurcations, the extraction from these of those that correspond to 
generation and mutual transitions of the modes of the probability functional, comprise the 
content of a stability investigation (in the ensemble sense) of this and kindred /I/ 
stochastic systems. 

Let c,,,(r) denote the zeros of the operator B(r;h,). Under conditions (1.2) they will 
be non-trivial solutions of the linear equation 

B (r; I+,) x = 0 (3.3) 

We let horn denote values of the quantity Lo corresponding to moments of irreversibility 
of the operator B(r; h,). 



We examine the case when just one zero of the operator B(r;A,) corresponds to each value 
of z&>O. In this case (3.2) allows a formal solution of the form (analogous to non- 
linear equations with operators in Banach spaces /lo/) 

z(r)=~~~(r)-D~dsR,(r,s)[u-lYT() s -t NI [s; x] - $1 (s; L ho) j E (N2 [s; r.] - Jj (s; A))] + o (a) (3.4) 
0 

rl = i dr7 (4 im (4 
i 

(3.5) 

Here R,(r. s) is the kernel of Green's operator determined under conditions (1.2) by 
the expression 

B (r: Lo,,,) R, (r, r’) T f ds;, (r) cm (s) R, (s, r’) = 6 (r, r’) 

4. We consider the case when P = 0 (circular membranes). In this case (3.1) has both 
zero and non-zero solutions. We pose the following question: for what values of i. is the 
trivial extremal U* = 0 a mode of the probability functional of the membranes P, [ul = P,,, lul. 

Analogous to non-linear equations with bounded operators with probability one /lo/, the 
solution of (3.4) is representable as the following convergent series in probability as E = 0: 

y. (r) = ,r, %k (r) ‘1’ (4.1) 

The quantities %b are found by the method of undetermined coefficients, i.e. by sub- 
stituting (4.1) into (3.4) and subsequent comparison of the coefficients of identical powers 
of 1). The so-called bifurcation equation for the quantity 11 is formed by substituting 
(4 into (3.5). By carrying out these operations we obtain 

Ln (1. - Xum) - CXL~: (i.. %,,) - a&n1 z 0 (4.5) 

(3 

L, = C dr i ds (rs)-’ : g (r, s) Em’ (r) :,’ (s) 

As is clear from (3.2) and (4.23, the following are approximate 

‘4 * (r) = li= (r. i. ~ Lam) = & PC”, (rJ 

p = ia-1 I L”’ (i, iom) _L;’ j (i. - i&]’ : 

L”’ (i.. i.om) = Lll - a.Ll? (i.. i.,,,) (i. -horn)-’ 

small solutions of Eqs. 

It hence follows t:rat (3.1) has lust a trivial solution in the domain 0 < ). <,aon @on is 
the least quantity from the sequence (Lam)). This means that here the probability functional 

PO lul reaches the extremum only in the mode li (r) = 0. The nature of this extremuzr is 
established from the continuity (in probability) of the functional P,(u] and the conditions 

P" [ul Y 0. P, lu = ill:- 0. P III --+ =x1- 0 t 0 (4.4) 

These conditions indicate that the extremal U* (r) = 0. which is unique here, is a mode 
of the functional P, [ill. 

The second variation of the functional S, [IL] = --In (c-‘P,Iul) has the form of a simple 
quadratic form in the neighbourhood of u=o 

62Sl[u]=-&~cm(i.~u,2, u,== S dr;,(r)u(r) (4.5) 
m 0 

The quantities c,().)are the eigennumbers of the operator on the left side of the equation 

jdr, @Sl [ul 1 u(rl)=cu(r) bu (rl) du (r) u=o 

The solutions of (4.6) agree, in probability, with the zeros c,,,(r) of the operator 

B (r, h). 
The probability functional P,[u] has just one extremum in the domain O<l.<p, the 

maximum in the function U (7) = 0. Therefore, the quantity S, [u] is here a functional 
convex downward FS, [ul> 0 in the small neighbourhood u (r) = 0 and all c, (i.) >O. Upon 

achievement (and a small subsequent increase) by the compressive force i. of the value lion. 



the eigennumber c, (A) passes through zero into the domain of negative values. The quadratic 

form (4.51 beccanes sign-definite. Therefore, the trivial solution of (3.1) for E = 0 

ceases to be a mode of the functional P&u). %y virtue of conditions (4.4) modes for the 
functional P,[u] should be here among the remaining solutions of (3.1). Within the framework 
of the approximations used, there are two such solutions in a sufficiently small positive 
semicircle of pm: Uf (r; I - pod. Since P,lul = P, f-u], both these solutions will approxi- 
mate nodes of the membrane probability functional. 
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Therefore, the membrane probability functional P,[u) has a single extremum up to the 
time h = pan of the first bifurcation of the trivial solution of the extremal equation, the 
maximumon u(r) = 0 which goes over into new maxima at approximately the modes u, @% h - Prm) 
at the time noted. 

Such a phenomenon is an example of stochastic bifurcation. 
For sufficiently small K(r, r') problem (3.31, (1.2) allows the approximate solutions 

5, (r) z (Cm (r) = (2rp 1 J, (km) 1 -‘J, (lid) within the framework of the Galerkin method (J, (J) 
are n-th order Bessel functionsofthe first kind, and k, are the roots of the equation J,(r), 
r>O). The values A,, of the force X corresponding to times of irreversibility of the 
operator B (r-7.) are found in the neighbourhoods of the quantities tD in this case. Approxi- 
mately 

(4.7) 

According to (4.31, the following will be approximate small solutions of (3.11 for e = 0 : 

$’ (r; i., qmZ) = Au,,, (i.) [(c&J1 (i. - qm2)]“r cp,(r) 
a,(h)= / 1. - /i,,q’ [(i. - QmZ)S -L 3 (X - q,')(g,,," - k,,') ;- 3 (qm2 - k,*)']' * 

(4.8) 

In the case K = 0, expressions (4.7) and (4.8) determine the known /lo/ sequence {km2) 
of equilibrium bifurcation points of membranes with zero transverse load and derivatives of 
the equilibrium deflection modes r.z;"' (r) 

+ z 2 [(&J* 0. - k,,2)]‘,: 1 JB (6,) 1-1 Jl (knr) 

Let the correlation moment B(r. r') of a random field o f dimensionless transverse loads 
II (r) be approximated by the A-functions 

B (r. r’) = Ab (r. r’) (4.9) 

The correlation moment of the field j(r) corresponding to this approximation has the 
following form: 

A' (r. r') = .-I mill (P-, r') (rr’)-‘2 (4.10) 

Computations performed by means of (4.7) and (4.10) ShGW that over a fairly broad range 
of variation of the amplitude A = [O, 101 in which the approximations used are valid, the 
least quantity from the sequence {q,,,‘) is reached at the value nz = 1, i.e., 

4,’ = min {qn,‘} 2 k,? - O.tiY(?A)"l, k,? z 14.69 (4.11) 

The case similar to (4.11) (in the sense of the existence of a minimum of the sequence 
Is,,,‘-) at the value m = i) holds for a field of transverse loads with a non-zero radius of 
correlation and the moment 

B (r. r') = -4 esp {- 1 r - r' 1 rOeI}. 0 < rD < 1 (4.12f 

Here rO is the scale correlation parameter. 
1n both cases (4.9) and (4.12), the stochastic bifurcation of the membrane equilibrium 

sets in earlier (as the compressive force increases) than the deterministic bifurcation of a 
membrane with zero transverse load. 

The influence of the stochastic loads on the capacity to buckle is estimated by the magnitude 
of the relative distance v,, between the first (in the compressive force) point of bifurcation 
of the equilibrium of a membrane with zero transverse load and stochastic bifurcation point, 
In this case 

YO = (k,* - 414) k,_* (4.i3) 
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Computed dependences of the quantity y on the 
amplitude A of the correlation moments of a random 
field of transverse loads are represented in Fig.1 
for the case a = 0.1 . Curve 1 corresponds to a 6- 
correlated field of loads (the moment (4.9)). Curves 
2, 3 correspond to load fields with correlation 
moments of the type (4.12) with the scale parameters 
r. = 0.1 and 70 = O.Of , respectively. It follows 
from the shape of these curves that the predisposition 
to buckling of the intial mode is raised markedly 
for membranes with a stochastic transverse load 
compared with membranes with zero transverse load 
even in the domain A <l. 

5. We examine the case O<E< 1 (shallow shells). For small E and a problem (3.2), 
(1.2) allows the following approximate solution within the framework of the Galerkin method: 

7. (r) = YE"1 (r) (5.1) 

The parameter 17 in (5.1) is subject to the equation 

aeL, -k IL,, (A - horn)- aLI, (A, hom)lq -i ad2h2+aL~qS20 

The coefficients of (5.2) satisfy the relationships (4.2) and the equalities 

(5.3, 

Lo = 5 dr;, (r) q (r, i.). L2 = 5 dr i d~r-“,~,~ (r) g (r, s) 5, (s) 
0 0 0 

Up to the time i. = &,Eq.(5.2) has one, non-trivial, solution qo. Starting with this 
time there will be three s-ch solutions: qO, VI,, n_. Within the framework of the approximation 
Em(r)= (c,,, (r) we obtain 

Llni = F".' = qn,? - (2‘% ‘EC2 .r,p;n’ ‘Km)“. (5.3) 

In the neighbourhoods of the quantities i. = ).lm the behaviour of the amplitudes 90. 'ii 
is characterized by the following dependence OII 1.: 

'lu - (; - e,,ii.))! ’ - y,,; (5.4) 

I,_ - -gk,(;,j I”-’ : - (- 4-1 ? T X’d,,, (i.) g; ‘(i.))’ .] - y . n, (5.5) 

y, = ?E (.:@,. )-I T,,<. 6, = i. - iLo,,. 4, 0.1 = - 3yvs2 - (=P,,J-~ 6,,, 

g, (j.) = Y,.. [(aP,~,)ml 6,. - (62TGfK,,,) 31 

For large absolute valcies cf the quar.titles E,,> = (zfi,,)-'6, the asTym~totic forr, of the 
solutions of (5.2) acquires the following form 

‘1, - - 1102’ q_ - - 1)01* Em-b x (5.7j 

We extract the least quantity i.,:- from the sequence {&,,,). We assume that just one 
pair (St (r). i,,,,) corresponds to it. Then, to a first approximation, (3.1) has simple solutions 
of the type (5.1) for small E. CL 

% (r) = ?'lii (7) (5.8) 

Substituting here (5.4)-(5.7) instead of q, we obtain the asymptotic form of small 

solutions of the extremal equation for the shell PF P, [u] before and after the first point 
of their bifurcation. 

The functional P, [ul is continuous in probability intheset M. It satisfies the conditions 

P, lul > 0 (Vu E U), P, lu z; LEJ --f 0 J_ 0 (5.9) 

It follows from these conditions that within the framework of the approximations utilized 
the single extremal r.(r) z >l&;, (7) is the mode of the PF P, lul in the domain 0 < h < l.'k2 = 

min {r~,~~*) . 
Approximately from the time h = p,:' = min {~,~*}two new non-trivial solutions appear for 

the extremal Eq.(3.1) (fcr E>o): Y.* cr.) = tl*vv (r). Both these solutions start from one 
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point in the (h,q) plane with coordinates 

h = p1;*, ,, ---(2-'g,(h = pk'))l:,- 2E(3&)-‘Tk 

It follows from (5.4) and (5.8) that in the domain O<lr< pk*the CUNe q_(A) lies 

between the curves 'lo(k) and '1, (A) in the (A, (1) Plane. (Note that as Ek - 03 the amplitudes 

q_,~ differ only in sign, while the quantity ?_ is proportional to the small ratio E/a 

for e < a). Hence, and from conditions (5.9) it follows that within the framework Of the 

approximations used, the functional PC IUl has maxima in the modes x0(r) =clo(Pk(rh x+(r)=q+(Fk(r) 

in the domain I.> pk'. The time of origination of the second maximum for hE,+' is accompanied 
by the inequality P,[Y.~]< P,[xo13 which is replaced by the approximate equality psIx,lf p, [Xol 
as &. + 00. 

Therefore, for a given stochastic elastic system (an open shallow spherical shell of 
circular outline with a random Gaussian transverse load and uniform radial stress on the 
contour), the most probable deflection mode in the domain I< ph2 = min {pmz} is the single mode 

v. (r) for which 
dvo (4 
- = tlO]k (r)r 

dr 
Ik (r) = 1 J2 (kk) 1-l Jl (kkr) 

In the domain fk-+ 03 the most probable deflection modes are two: vo(r) and v, (r), where 

duo(r) 
- - qO?Ik (?)’ dr w - - qO,lX (r) 

Let 1', be the set of possible shell deflection modes, and 1',,Ir its subsets which are 
non-intersecting neighbourhoods of the elements v,EV,,v+E 1-, from V,, respectively. The 

presence of two equilibrium deflection modes co(r). V+(r) as [k --+ 2*, that have almost equal 
maximum probabilities of existence on V (replaced by one maximally probable mode vo(r) for 
h. CT clk2) generates a moderate probability of transition from one of the elements of the set 

I', to one of the elements of the set I'_ for small system perturbations in the case 1.> pa?. 
Such a phenomenon is a case of stochastic snap-through. 

For transverse loads with the correlation moments 

1 (4.9) and (4.121, the least value from the sequence {CL,,,'} 

3 

Yc 

I!!!!!3 

is reached in the domain A = [O, 101 at the value m = 1, 
i.e., the equality p12= min {u,'} holds. The influence 
of the parameter E on the stochastic bifurcation can be 
estimated from the relationship 

a.92 
u kl* - p12 

Tc =klz--q,? 

?I Computed dependences of the quantity 7, on E for 

( different values of the correlation-moment amplitudes 
o.ei o 0.0s D.08 are giver. in Fig.2. Curves 1 and 3 correspond to b- 

correlated fields of transverse loads with amplitudes 
Fig.2 A = 0.1 and A = 9.4, respectively. Curves 2 and 4 

correspond to fields of transverse loads with moments of 
the type (4.12) for one common value of the parameter Q= 0.i and two values A = 0.1 and 
A = 9.4 . respectively. The behaviour cf the curves in Fig.2 indicates that the initial 
shell curvature exerts a retarding influence on the possibility of stochastic bifurcation. 
In ether words, as E grows, more and more compressive force is required so that two maxima 
appear in the probability functional instead of one. 
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ASYMPTOTIC FORM OF THE STRESS INTENSITY COEFFICIENTS IN 
QUASISTATIC TEMPERATURE PROBLEMS FOR A DOMAIN WITH A CUT* 

V.A. KOZLQV,V.G. MAE'YA and V.Z. PARTON 

Plane quasistatic thermoelasticity problems are investigated for domains 
of arbitrary shape with a cut inthe case of an instataneous temperature 
change onthe boundary. The asymptotic form of the stresses is investigated 
in the neighbourhood of a crack tip. 

Certain quasistatic temperatue problems were solved earlier in /l-5/ 
(see /6/ also) for the development of cracks on parts of whose surfaces a 
constant temperature occurs at the initial instant and is maintained. 
Expressions are obtained for the stress intensity coefficients at the 
crack tip. 

Quasistationary thermoelasticity problems are investigated below for 
domains with cut in a more general asymptotic sense. A plane domain with 
a cut whose boundary is instantaneously cooled or heated is examined in 
Sects.l-3. Since the shape of the domain contour can be arbitrary, it is 
impossible to speak of the explicit solution of the thermoelasticity boundary 
value problem. Nevertheless, an expression is successfully found for the 
principal terms of the asymptotic form of the stress intensity coefficients 
at the most dangerous initial times (from the viewpoint of crack propagation). 
In particular, the asymptotic form of the fracture time is determined as a 
function of the temperature jump at the crack tip. 

Note that the principal term of the tensile stress intensity coefficient 
is independent of the contour shape, and agrees with the intensity 
coefficient of the same problem for a plane with a cut. 

Analogous results are obtained in Sec.4 for the problem of an 
instantaneous change in the endface temperature of a thin plate from whose 
side surfaces heat is transferred to the external medium, where the stress 
intensity coefficients found are explicitly expressed in terms of those in 
the absence of heat transfer. This enables an asymptotic analysis to be 
made of the stresses near a crack tip at the initial times. 

The results obtained in this paper emerge fromthe asymptotic solution 
of the heat conduction equations as t-0 for a domain witha cut and the 
method proposed in /7/ for calculating the stress intensity coefficients. 

1. Formulation of the boundary value problems. To be specific we will examine 

plane strain. As is well-known, the plane state of stress with zero heat transfer from the 
external medium is realized on replacing the Lam; constant ?. by A, = 2141 (i, -I- 2p), and 1 

by 1.1 = (1 - 2~) p (1 - 0). where 1' = 2pr*r (1 -!- v)/(1 - 2~); p is the shear modulus, cr is the 
coefficient of linear expansion, and v is Poisson's ratio, in which connection, only the 
appropriate constants vary inthe asymptotic formulas indicated later. 

Let e!. be a plane domain with a smooth boundary r0 (see the Figure). There is a 
rectilinear cut of length 1 in Q, that connects the origin 0~ Q, with the point A E To. 
We denote the upper and lower edges of the cut by l_ and 1_. We understand r to be the 

contour r0 supplemented with two drawn segments 1. and Q to be the domain bounded by r 
Let R' be the closure of the domain $2 in the sense of its internal metric. To simplify the 
discussion, we will consider the angle formed by the contour r0 and the segment 1 to be a 
right angle, and the contour I-, itself to be rectilinear near the point A. 

The temperature T is determined from the solution of the boundary value problem 

*Prikl.Matem.Mekhan.,49,4,627-636,198s 


